Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis
نویسندگان
چکیده
It is generally accepted that the translation rate depends on the availability of cognate aa-tRNAs. In this study it is shown that the key factor that determines translation rate is the competition between near-cognate and cognate aa-tRNAs. The transport mechanism in the cytoplasm is diffusion, thus the competition between cognate, near-cognate and non-cognate aa-tRNAs to bind to the ribosome is a stochastic process. Two competition measures are introduced; C(i) and R(i) (i=1, 64) are quotients of the arrival frequencies of near-cognates vs. cognates and non-cognates vs. cognates, respectively. Furthermore, the reaction rates of bound cognates differ from those of bound near-cognates. If a near-cognate aa-tRNA binds to the A site of the ribosome, it may be rejected at the anti-codon recognition step or proofreading step or it may be accepted. Regardless of its fate, the near-cognates and non-cognates have caused delays of varying duration to the observed rate of translation. Rate constants have been measured at a temperature of 20 degrees C by (Gromadski, K.B., Rodnina, M.V., 2004. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191-200). These rate constants have been re-evaluated at 37 degrees C, using experimental data at 24.5 degrees C and 37 degrees C (Varenne, S., et al., 1984. Translation in a non-uniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol. 180, 549-576). The key results of the study are: (i) the average time (at 37 degrees C) to add an amino acid, as defined by the ith codon, to the nascent peptide chain is: tau(i)=9.06+1.445x[10.48C(i)+0.5R(i)] (in ms); (ii) the misreading frequency is directly proportional to the near-cognate competition, E(i)=0.0009C(i); (iii) the competition from near-cognates, and not the availability of cognate aa-tRNAs, is the most important factor that determines the translation rate - the four codons with highest near-cognate competition (in the case of E. coli) are [GCC]>[CGG]>[AGG]>[GGA], which overlap only partially with the rarest codons: [AGG]<[CCA]<[GCC]<[CAC]; (iv) based on the kinetic rates at 37 degrees C, the average time to insert a cognate amino acid is 9.06ms and the average delay to process a near-cognate aa-tRNA is 10.45ms and (vii) the model also provides estimates of the vacancy times of the A site of the ribosome - an important factor in frameshifting.
منابع مشابه
Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination.
During protein synthesis, aminoacyl-tRNA (aa-tRNA) and release factors 1 and 2 (RF1 and RF2) have to bind at the catalytic center of the ribosome on the 50S subunit where they take part in peptide bond formation or peptidyl-tRNA hydrolysis, respectively. Computer simulations of aa-tRNA movement into the catalytic site (accommodation) suggested that three nucleotides of 23S rRNA, U2492, C2556, a...
متن کاملInduced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.
The fidelity of aminoacyl-tRNA (aa-tRNA) selection by the bacterial ribosome is determined by initial selection before and proofreading after GTP hydrolysis by elongation factor Tu. Here we report the rate constants of A-site binding of a near-cognate aa-tRNA. The comparison with the data for cognate aa-tRNA reveals an additional, important contribution to aa-tRNA discrimination of conformation...
متن کاملaa-tRNA competition is crucial for the effective translation efficiency
Translation is a central biological process by which proteins are synthesized from genetic information contained within mRNAs. Here we study the kinetics of translation at molecular level through a stochastic simulation model. The model explicitly include RNA sequences, ribosome dynamics, tRNA pool and biochemical reactions in the translation elongation. The results show that the translation ef...
متن کاملRibosome dynamics during decoding
Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to se...
متن کاملKinetic determinants of high-fidelity tRNA discrimination on the ribosome.
The ribosome selects aminoacyl-tRNA (aa-tRNA) matching to the mRNA codon from the bulk of non-matching aa-tRNAs in two consecutive selection steps, initial selection and proofreading. Here we report the kinetic analysis of selection taking place under conditions where the overall selectivity was close to values observed in vivo and initial selection and proofreading contributed about equally. C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational biology and chemistry
دوره 31 5-6 شماره
صفحات -
تاریخ انتشار 2007